
APPENDIX

APPENDIX I
PROMPT EXAMPLE

To incorporate prior knowledge of the robot’s operating
environment, we utilize GPT-4o to generate a potential list
of detection classes. The prompt and the returned class list
are as follows:

User Prompt

I am deploying a robot in an indoor house setting and
the robot needs a list of object categories to detect.
Based on class name formats from the ScanNet
and Replica datasets, provide 100 common indoor
categories from living rooms, bedrooms, restrooms,
kitchens, etc. The last category should be ‘null’.

GPT-4o Output

chair, sofa, table, bed, desk, cabinet, shelf, book,
lamp, tv, television stand, refrigerator, microwave,
oven, sink, washing machine, dryer, stove, dish-
washer, toaster, kettle, coffee maker, towel, toilet,
shower, bathtub, mirror, picture frame, door, window,
floor lamp, ceiling lamp, fan, air conditioner, heater,
carpet, rug, trash can, recycling bin, iron, ironing
board, broom, vacuum cleaner, trash bag, laundry
basket, tissues, soap dispenser, toilet paper, tooth-
brush, toothpaste, hair dryer, shampoo, conditioner,
shampoo dispenser, toilet brush, shampoo bottle,
soap bar, candle, plant, pot, vase, clock, speaker,
remote control, fan heater, curtains, blinds, curtain
rod, frame, desk chair, bed frame, dresser, night-
stand, wardrobe, closet, pillows, blanket, mattress,
pillowcase, slippers, shoes, hangers, coat rack, wall,
floor, ceiling, staircase, hallway, entryway, shelf unit,
drawer, light switch, outlet, plug, router, computer,
monitor, keyboard, mouse, printer, null.

This output class list, named gpt indoor general in
the released code, was used for our indoor experiments.

APPENDIX II
DETAILED EXPERIMENT SETUP

A. Datasets

For ScanNet, we use the following scenes:
scene0011 00, scene0050 00, scene0231 00,
scene0378 00, and scene0518 00. We adopt
the ScanNet200 benchmark, which shares the same
geometry as ScanNet20 but provides a broader set of
class categories and more detailed semantic annotations
for evaluating 3D scene understanding methods. For
Replica, the evaluated scenes are: office0-office4
and room0-room2. To evaluate query performance
across a wider range of semantic categories, we use
HM3DSem, specifically the scenes 00829, 00848,

TABLE VIII: Queried Objects in HM3D Test

Scene Objects for Navigation Evaluation

00829 chair, picture, towel, table, ottoman, tap, sofa, bin, tv, cabinet,
magazine, washbasin counter, bed, telephone, clothes, bath-
tub, bag, tv stand, decoration, toilet, cracker box, soup can,
pitcher, bowl, plate, scissors

00848 pillow, tap, stool, toilet paper, towel, magazine, vase, bed,
armchair, bowl of fruit, bathroom counter, christmas tree,
bench, kettle, coffee maker, microwave, cooker, refrigerator,
kitchen island, bathtub, cracker box, soup can, pitcher, mug,
plate, scissors, banana

00880 shelf, painting, table, cabinet, curtain, container, mirror, hat,
tv, washing machine, laptop, clothes, couch, microwave,
sink, trashcan, dishwasher, ironing board, printer, desk,
cracker box, soup can, pitcher, bowl, plate, scissors

and 00880. To enrich the object categories, we place
six objects from the YCB dataset at random positions
within each HM3DSem scene. The object models used
are: 003 cracker box, 005 tomato soup can,
011 banana, 019 pitcher base, 024 bowl,
025 mug, 029 plate, and 037 scissors.

B. Metric Definitions

In semantic segmentation evaluation, three metrics mIoU,
FmIoU, mAcc are defined as follows:

mIoU =
1

C

C∑
i=1

TPi

TPi + FNi + FPi
(8)

FmIoU =

C∑
i=1

TPi + FNi∑C
j=1(TPj + FNj)

× TPi

TPi + FNi + FPi
(9)

mAcc =
1

C

C∑
i=1

TPi

TPi + FPi
(10)

where C is the number of classes, and TPi, FPi, and FNi

denote the true positives, false positives, and false negatives
for class i, respectively. In FmIoU, the first term represents
the class frequency, while the second is the IoU of class i.

C. List of Navigation Tasks

In the HM3DSem object navigation experiments, we se-
lected representative objects from the ground truth labels,
covering a variety of common categories found in indoor
environments. The complete list of objects used for the
navigation tasks is provided in Table VIII. The added YCB
objects are marked with underline, and Fig. 7-a illustrates
the original placement of these YCB objects across the test
scenes.

D. Dynamic Setting

The added YCB dataset objects are also used in dynamic
change query experiments. Following the two types of dy-
namic changes defined in Sec.V-A.1, each object is moved
three times for both in-anchor and cross-anchor changes.
Fig. 7 uses scene 00829 as an example to illustrates how
these changes are applied.



00829-QaLdnwvtxbs

00848-ziup5kvtCCR

00880-Nfvxx8J5NCo

00829-QaLdnwvtxbs

In-anchor Changes

Cross-anchor Changes

...
...

a) Static Scene Configuration b) Dynamic Scene Configuration

Fig. 7: Examples of YCB object configurations: a) YCB objects are manually placed across three HM3D scenes. b) The
YCB objects are dynamically relocated via two dynamic change types for the navigation test.

TABLE IX: Ablation Study on Feature Weighting

Replica Scannet
fimage ftext FmIoU mAcc mIoU fimage ftext FmIoU mAcc mIoU

0.0 1.0 0.531 0.388 0.237 0.0 1.0 0.284 0.318 0.140
0.1 0.9 0.532 0.384 0.239 0.1 0.9 0.309 0.328 0.150
0.3 0.7 0.545 0.420 0.249 0.3 0.7 0.305 0.350 0.152
0.5 0.5 0.557 0.439 0.262 0.5 0.5 0.321 0.365 0.163
0.7 0.3 0.551 0.425 0.251 0.7 0.3 0.334 0.371 0.167
0.9 0.1 0.498 0.380 0.201 0.9 0.1 0.323 0.368 0.158
1.0 0.0 0.430 0.358 0.174 1.0 0.0 0.301 0.356 0.154

APPENDIX III
EXPERIMENTS FOR THRESHOLD

In this section, we present the experiments conducted to
determine the threshold, as discussed in Sec. III-A.2 and
Sec. IV-A.

A. Feature Weights

Regarding the weighting in Equation 1 in Sec. III-A.2,
we empirically selected the weights based on an ablation
study conducted on both the Replica and ScanNet datasets.
As shown in Table IX, assigning weights of 0.7 and 0.3
to fimage and ftext, respectively, yields the best or near-best
performance across all metrics.

B. Detailed Object Classification in Abstraction

we predefine three lists to support anchor object identifi-
cation and map abstraction in Sec. IV-A:

• Volatile object examples: A representative list of 12
categories selected from the GPT generated class list,
including [“backpack”, “box”, “clothes”, . . ., “indoor-
plant”].

• Anchor object examples: Similarly, we define a list
of 12 anchor categories, such as [“stool”, “cabinet”,
“couch”, . . ., “bathroom-vanity”].

• Descriptive phrases for anchors: We use manually
defined phrases to describe anchor objects: [“furniture
that is not often moved”, “furniture that is used for
sitting”, “furniture that is used for placing things”].

All the objects from concrete map are embedded into a
shared visual-semantic space using CLIP features, allowing
us to classify them based on semantic feature similarity. To

Fig. 8: Binary classification accuracy of anchor vs. volatile
objects w.r.t. threshold τa across Replica dataset

distinguish between anchor and volatile objects, we further
use a two-step heuristic:

• First, we compare each object’s CLIP embedding with
two representative category example lists—one for
volatile objects and one for anchor objects. If the
maximum similarity to one list exceeds the other by
a margin ∆τ = 0.05, the object is assigned to the
corresponding category.

• Second, for ambiguous cases where the margin condi-
tion is not met, we compute the similarity between the
object and a list of descriptive phrases for anchors. If the
similarity exceeds a threshold τa, the object is classified
as an anchor.

To determine the optimal threshold τa, we conduct a
validation experiment. Specifically, we build concrete maps
for 8 scenes in the Replica dataset and manually annotate
each reconstructed object as either “anchor” or “volatile”
to serve as ground truth. To evaluate the classification, we
compute accuracy using the standard binary classification
formula: Acc = TP+TN

TP+TN+FP+FN , where a prediction is
considered True if it aligns with the manual annotation. We
sweep the threshold τa over the range [0.2, 0.8] and plot the
resulting accuracy in Figure 8. Based on this curve, we select
τa = 0.5 as it yields the highest accuracy and thus provides
a reasonable trade-off.



TABLE X: Open-vocabulary 3D Semantic Segmentation and Efficiency

Dataset Method CLIP-Backbone mIoU ↑ FmIoU ↑ mAcc ↑ ODR Avg. Mem ↓ Peak Mem ↓ TPF (s) ↓

Replica

ConceptGraphs ViT-H/14 0.1483 0.3124 0.3521 2.31 10044.6 23243.0 5.111
Mobile-CLIP 0.1501 0.3858 0.3559 2.02 7148.9 23551.9 4.188

HOV-SG ViT-H/14 0.2129 0.4188 0.3794 3.13 70252.9 163238.5 45.056
Mobile-CLIP 0.2050 0.4846 0.3835 3.81 73368.0 158126.6 42.005

DualMap(Ours) ViT-H/14 0.2323 0.4859 0.3832 0.974 3281.5 4688.9 0.458
Mobile-CLIP 0.2538 0.5207 0.4024 0.967 3095.2 4564.0 0.276

ScanNet

ConceptGraphs ViT-H/14 0.0646 0.1896 0.2394 7.75 13790.2 27086.0 7.605
Mobile-CLIP 0.0882 0.3077 0.3538 6.97 9780.3 26155.2 6.301

HOV-SG ViT-H/14 0.1229 0.3105 0.3104 18.96 14561.2 44437.2 9.959
Mobile-CLIP 0.1333 0.3381 0.3714 20.34 9223.0 25735.0 8.039

DualMap(Ours) ViT-H/14 0.1611 0.3179 0.3632 2.55 2607.5 4428.6 0.306
Mobile-CLIP 0.1604 0.3288 0.3794 2.56 2120.9 2820.2 0.163

APPENDIX IV
MORE SEMANTIC MAPPING EXPERIMENTS

A. Results with Other CLIP Backbone

The results presented in Table X highlight the advan-
tages of using the Mobile-CLIP backbone for semantic
segmentation tasks. Notably, methods employing Mobile-
CLIP demonstrate superior accuracy and faster performance
compared to those utilizing ViT-H/14 backbone. Our pro-
posed method not only exhibits robustness across various
CLIP backbones but also consistently outperforms other
methods. Additionally, substituting Mobile-CLIP for ViT-
H/14 significantly reduces memory usage and time costs,
making it more resource-efficient for semantic segmentation
applications.

B. Results under Moving Humans

Regarding dynamic entities like humans, DualMap is ca-
pable of generating a complete 3D semantic map without
being affected by their movement. We conduct additional
experiments on the Dynamic Objects split of the TUM
RGBD dataset, widely used in the SLAM field. The quali-
tative results on freiburg3 walking static sequence
are shown in Figure 11. As illustrated in Figures 11-b and 11-
c, the mapping results are unaffected by the movements of
humans. This robustness is attributed to our hybrid open-
vocabulary segmentation pipeline and the object stability
check mechanism (detailed in Sec. III-A-1 and Sec. III-B-3).
Figure 11-a shows part of the segmentation results, where
humans, absent from YOLO’s class list, are occasionally
segmented by FastSAM. Since human movement leads to
unstable segmentation, their related objects in concrete map
are easily filtered out by the stability check due to the limited
observations.

C. Detection Refinement Details

There are two factors that require refinement to improve
the YOLO output. First, YOLO may assign inconsistent
class labels to different parts of the same object, as shown
in Figure 9-a, where a single cabinet is partially labeled as
“cabinet” and partially as “dresser.” Label-based merging
would fail to recognize them as one object. Second, in
cluttered scenes such as Figure 9-b, multiple overlapping

Fig. 9: YOLO and FastSAM detections on two frames.

Fig. 10: Visualization of BGR channel-wise color distribu-
tions for two overlapping segment pairs from Replica

objects (e.g., pillows) often share the same class label,
causing label-based methods to incorrectly merge distinct
objects into one.

To address these issues, we adopt a color-based merging
strategy. We first identify overlapping bounding box pairs.
For each pair, we extract the pixel intensity histograms from
the B, G, and R channels, dividing each into 16 equal-width
bins: [0, 16), [16, 32), . . . , [240, 256). We then compute the
cosine similarity between the corresponding channel his-
tograms (e.g., vb1 and vb2 for blue), and take the average



……
a) Per-frame open-vocabulary segmentation results

b) Final concrete map (RGB view) c) Final concrete map (Semantic view)

Fig. 11: concrete mapping results on freiburg3 walking static

of the three channel-wise similarities as the overall color
similarity. If the average similarity exceeds a threshold (0.95
in our case), we treat the segments as visually consistent and
merge them. This method successfully merges parts of the
same object (Figure 10-a) while avoiding incorrect merges
in cluttered scenes (Figure 10-b).

APPENDIX V
MORE PERFORMANCE EXPERIMENTS

A. Runtime Decomposition

We break down the module-wise time cost on RTX 4090
Desktop in Table XI and Figure 12. The results show
that over 57% of the time per frame is spent on model
inference (highlighted in grey). This indicates that applying
inference optimizations such as TensorRT acceleration or
model quantization can significantly reduce runtime with
minimal accuracy impact.

B. Experiments on Laptop and Different Resolutions

While our main experiments were conducted on an RTX
4090 GPU Desktop, we conducted additional experiments
on a laptop equipped with an RTX 3080 Laptop GPU. The
additional system evaluation on Replica dataset is shown in
Table XII. The results show that, at the same input resolution
(1200×680), the RTX 3080 Laptop achieves comparable
accuracy with a 1.6× increase in latency (around 0.4s/frame),
which remains acceptable for online applications. Further-
more, by reducing the input resolution to 640×360, the
system achieves a good trade-off between accuracy and
efficiency, with only a minor drop in accuracy (e.g., ˜3%
FmIoU loss) and comparable runtime performance to the
results on the RTX 4090 Desktop. This suggests that ap-
propriately adjusting input resolution offers a practical path
for deployment on lower-cost devices.

C. Resources Usage in Long Operation

We additionally conducted long-term mapping experi-
ments in both a structured hallway and a cluttered apartment.

TABLE XI: Time Decomposition on Replica with 4090

TPF (s) Modules Submodules Time (s)

0.2524

Observation
Generation∗

0.2183

FastSAM † 0.0592
YOLO+MobileSAM † 0.0373

Detection Filter 0.0372
Create Obj. Pointcloud‡ 0.0866

CLIP‡ 0.0619
Observation Formatting 0.0187

Mapping∗

0.0485
Concrete Mapping 0.0485

Abstraction 0.0000

Visualization
0.0341 – 0.0341
∗, †, and ‡ indicate parallel execution.

57.9%

28.7%

13.5%

Model Inference

Other Modules

Visualization

Fig. 12: System Runtime Breakdown on Replica

The experiments were performed using an RTX 4090 Desk-
top GPU with an input resolution of 1280×720. As shown in
top two rows in Figure 13 and Figure 14, the average runtime
per frame remains stable (0.112s and 0.156s, respectively),
and memory usage (CPU RAM) grows slowly and stays
bounded (around 3500–4200MB), even in more complex
environments. This is benefit from our dual-map design,
the concrete map memory size remains stable, resulting in



TABLE XII: Accuracy and Efficiency Across GPU and Resolution Settings on Replica

GPU Resolution FmIoU ↑ mAcc ↑ mIoU ↑ TPF (s) ↓ Rel. FmIoU∗ ↑ Rel. TPF∗ ↓

RTX 4090 Desktop 1200×680 0.5508 0.4251 0.2508 0.2524 100.00% 100.00%

RTX 3080 Laptop

1200×680 0.5503 0.4256 0.2502 0.4045 99.92% 160.26%
960×540 0.5507 0.4259 0.2526 0.3221 99.98% 127.61%
640×360 0.5341 0.3941 0.2428 0.2717 96.97% 107.65%
320×180 0.2646 0.1437 0.0801 0.2538 48.04% 100.55%

∗ Relative FmIOU and Relative TPF (Time Per Frame) are computed with respect to the 4090 Desktop at 1200×680 resolution.

H
al

lw
ay

Se
qu

en
ce

 

Fig. 13: Memory usage of concrete and abstract maps in a hallway sequence (212s).

consistent time cost in matching. Although the abstract map
expands, its memory usage is minimal (only a few hundred
KB). While the dual map maintains stable memory usage,
the overall system memory gradually increases due to the
cost of visualization. The detailed memory usage of concrete
map and abstract map can be found in bottom two rows in
Figure 13 and Figure 14. The testing results demonstrate
that DualMap scales well over time without ballooning in
runtime or memory usage.

APPENDIX VI
ACKNOWLEDGMENT

We would like to express our sincere gratitude to Pengxu
Hou and Runze Yu for generously allowing us to use
their experimental platform for the initial system validation.
Special thanks to Guowei Huai, Qingyun Wang, Yingxi Lin,
and Boyu Zhou for their valuable assistance during the real-
world experiments. We also appreciate the insightful sug-
gestions and feedback provided by Bonan Liu, Shibo Wang,
Zhengmao He, and Handi Yin, which greatly contributed to
this project.



A
pa

rt
m

en
t

 S
eq

ue
nc

e 

Fig. 14: Memory usage of concrete and abstract maps in an apartment sequence (286s).


